No role for bacterially produced salicylic Acid in rhizobacterial induction of systemic resistance in Arabidopsis.
نویسندگان
چکیده
ABSTRACT The role of bacterially produced salicylic acid (SA) in the induction of systemic resistance in plants by rhizobacteria is far from clear. The strong SA producer Pseudomonas fluorescens WCS374r induces resistance in radish but not in Arabidopsis thaliana, whereas application of SA leads to induction of resistance in both plant species. In this study, we compared P. fluorescens WCS374r with three other SA-producing fluorescent Pseudomonas strains, P. fluorescens WCS417r and CHA0r, and P. aeruginosa 7NSK2 for their abilities to produce SA under different growth conditions and to induce systemic resistance in A. thaliana against bacterial speck, caused by P. syringae pv. tomato. All strains produced SA in vitro, varying from 5 fg cell(-1) for WCS417r to >25 fg cell(-1) for WCS374r. Addition of 200 muM FeCl(3) to standard succinate medium abolished SA production in all strains. Whereas the incubation temperature did not affect SA production by WCS417r and 7NSK2, strains WCS374r and CHA0r produced more SA when grown at 33 instead of 28 degrees C. WCS417r, CHA0r, and 7NSK2 induced systemic resistance apparently associated with their ability to produce SA, but WCS374r did not. Conversely, a mutant of 7NSK2 unable to produce SA still triggered induced systemic resistance (ISR). The possible involvement of SA in the induction of resistance was evaluated using SA-nonaccumulating transgenic NahG plants. Strains WCS417r, CHA0r, and 7NSK2 induced resistance in NahG Arabidopsis. Also, WCS374r, when grown at 33 or 36 degrees C, triggered ISR in these plants, but not in ethylene-insensitive ein2 or in non-plant pathogenesis- related protein-expressing npr1 mutant plants, irrespective of the growth temperature of the bacteria. These results demonstrate that, whereas WCS374r can be manipulated to trigger ISR in Arabidopsis, SA is not the primary determinant for the induction of systemic resistance against bacterial speck disease by this bacterium. Also, for the other SAproducing strains used in this study, bacterial determinants other than SA must be responsible for inducing resistance.
منابع مشابه
MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe.
Colonisation of plant roots by selected beneficial Trichoderma fungi or Pseudomonas bacteria can result in the activation of a systemic defence response that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, induced systemic resistance (ISR) triggered by the rhizobacterial strain Pseudomonas fluorescens WCS417r is regulated by a jasmonic acid- and ethylene-dependent d...
متن کاملBacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants
Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...
متن کاملAcquired Resistance Signal Transduction in Arabidopsis Is Ethylene Independent.
To clarify the role of ethylene in systemic acquired resistance (SAR), we conducted experiments using Arabidopsis ethylene response mutants. Plants that are nonresponsive to ethylene (i.e., [theta]tr1 and [theta]in2) showed normal sensitivity to the SAR-inducing chemicals salicylic acid (SA) and 2,6-dichloroisonicotinic acid with respect to SAR gene induction and pathogen resistance. This indic...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملThe role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis.
Arabidopsis plants containing the ndr1-1 mutation are incapable of mounting a hypersensitive response to bacteria carrying avrRpt2, but show an exaggerated cell death response to bacteria carrying avrB (Century et al., 1995). We show here that ndr1-1 plants are severely impaired in induction of systemic acquired resistance and PR1-driven transcription of a reporter gene in response to Pseudomon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytopathology
دوره 95 11 شماره
صفحات -
تاریخ انتشار 2005